
Programming
Fundamentals in C++

Hope everyone is taking
care today!

Power Outage Updates - everything is tentative

● The Qt Creator Help Session will be moved to Jenny's Group OH time this week
instead: Thursday, June 23 at 1:30-3:30pm in Huang 019.

● There will be no sections or LaIR today. When the cs198.stanford.edu website
is back up, we will extend the deadline for section sign-ups. Tentatively plan on
attending a section on Thursday or Friday (regardless of what you end up being
assigned), but know that no one will be penalized for missing section this week.

● While everything is down, we are unable to update the course website or receive
emails via our @cs.stanford.edu addresses. If you need to contact us
privately about something, please use a private Ed post instead.

http://cs198.stanford.edu/

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Today…

Life after CS106B!

C++ basics
Implementation

User/client

Core
Tools

Today’s
questions

Why C++?

What do core programming
fundamentals look like in C++?

What’s next?

Why C++?

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)

○ 10 times faster than python!

● If you’re coming from a language like Python, the syntax will take some getting
used to.

The structure of a program
#include <iostream>

#include "console.h"

using namespace std;

// The C++ compiler will look for a function

// called “main”

int main() {

 cout << "Hello, world!" << endl;

 return 0; // must return an int to indicate

 // successful program completion

}

import sys

This function does not need to be called “main”

def main():

 print('Hello, world!')

if __name__ == '__main__':

 # Any function that gets placed here will get

 # called when you run the program with

 # `python3 helloworld.py`

 main()

C++ Python

Take a guess
Where does C++ rank among the popular programming
languages of the world?

C++ Overview
If someone claims to have the perfect programming language,
he is either a fool or a salesman or both.
– Bjarne Stroustrup, Inventor of C++

https://www.bloomberg.com/graphics/2015-paul-ford-what-is-code/

C

B

Credit:
https://www.ncl.ac.uk/computing/a
bout/history/1970s/

https://www.ncl.ac.uk/computing/about/history/1970s/
https://www.ncl.ac.uk/computing/about/history/1970s/

C

C
C++

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

● C++ has been an object-oriented language from the beginning
○ We will spend the middle portion of this class talking about the paradigm of object-oriented

programming

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

● C++ has been an object-oriented language from the beginning
○ We will spend the middle portion of this class talking about the paradigm of object-oriented

programming

● C++ is quite mature and has become complex enough that it is challenging to
master the language

○ Our goal in this class will be to help you become literate in C++ as a second programming
language

○ Even though it’s old, it still gets updated every ~3 years

C++ History

● C++ is a high-performance, robust (and complex) language built on top of the C
programming language (originally named C with Classes)

○ Bjarne Stroustrup, the inventor of C++, chose to build on top of C because it was fast, powerful,
and widely-used

● C++ has been an object-oriented language from the beginning
○ We will spend the middle portion of this class talking about the paradigm of object-oriented

programming

● C++ is quite mature and has become complex enough that it is challenging to
master the language

○ Our goal in this class will be to help you become literate in C++ as a second programming
language

2+2=4YOUR
THOUGHTS
/ THE REAL
WORLD

int sum = 0;
int num_busters = 2;
int num_perrys = 2;
sum = num_busters + num_perrys

PROGRAMMING
LANGUAGE

“High level”

“Low level”

Machine code

Python

C

C++

C++ Benefits and Drawbacks

Benefits

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

Drawbacks

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

Drawbacks

● C++ is complex
○ We will rely on the Stanford C++

libraries to provide a friendlier
level of abstraction

○ In the future, you may choose to
explore the standard libraries

C++ Benefits and Drawbacks

Benefits

● C++ is fast
○ Get ready for the Python vs C++ speed

showdown during Assignment 1!

● C++ is popular
○ Many companies and research projects

use C++ and it is common for coding
interviews to be conducted in C++

● C++ is powerful
○ C++ brings you closer to the raw

computing power that your computer
has to offer

Drawbacks

● C++ is complex
○ We will rely on the Stanford C++

libraries to provide a friendlier
level of abstraction

○ In the future, you may choose to
explore the standard libraries

● C++ can be dangerous
○ C++ will let you make mistakes

(especially related to memory)

Credit: Paul Ford

What do core programming
fundamentals look like in C++?

What do core programming
fundamentals look like in C++?

Get ready for a whirlwind tour!

Comments, Includes,
and Console Output

Comments

● Single-line comments

// Two forward slashes comment out the rest of the line

cout << "Hello, World!" << endl; // everything past the double-slash is a comment

● Multi-line comments

/* This is a multi-line comment.

 * It begins and ends with an asterisk-slash.

 */

Include libraries

● What is a library?
○ It’s a bunch of code that other people have written, packaged up nicely so

we can reuse it!
○ In C++, a library includes two files (.h header file, .cpp file)
○ In python, they’re called modules

● Standard library
○ Comes with the programming language

● Anyone can write a library and publish it
○ CS106
○ You could write a library!
○ Open-source

Includes

● Utilizing code written by other programmers is one of the most powerful things
that you can do when writing code.

● In order to make the compiler aware of other code libraries or other code files
that you want to use, you must include a header file. There are two ways that
you can do so:

○ #include <iostream>
■ Use of the angle bracket operators is usually reserved for code from the C++ Standard

library
○ #include "console.h"

■ Use of the quotes is usually reserved for code from the Stanford C++ libraries, or code in
files that you have written yourself

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

● In C++, the way that you get information to the console is by using the cout
keyword and angle bracket operators (<<).

cout << "The answer to life, the universe, and everything is " << 42 << "." << endl;

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

● In C++, the way that you get information to the console is by using the cout
keyword and angle bracket operators (<<).

● The endl is necessary to put the cursor on a different line. Here is an example
with and without the endl keyword.

cout << "This is some text followed by endl." << endl;
cout << "This is more text.";
cout << "We want to go to the next line here, too" << endl;
cout << "We made it to the next line." << endl;

Console Output

● The console is the main venue that we will use in this class to communicate
information from a program to the user of the program.

● In C++, the way that you get information to the console is by using the cout
keyword and angle bracket operators (<<).

● The endl is necessary to put the cursor on a different line. Here is an example
with and without the endl keyword.

cout << "This is some text followed by endl." << endl;
cout << "This is more text.";
cout << "We want to go to the next line here, too" << endl;
cout << "We made it to the next line." << endl;

Note: In C++, all programming statements must end in a semicolon.

Variables and Types

Variables

● A way for code to store information by associating a value with a name

Variables

● A way for code to store information by associating a value with a name

classNum106

tuesdayTemp94.7

Variables

● A way for code to store information by associating a value with a name

classNum106

tuesdayTemp94.7

We will think of
a variable as a
named
container
storing a value.

Variables

● A way for code to store information by associating a value with a name

classNum106

tuesdayTemp94.7

Note: C++ uses
the camelCase
naming
convention

Variables

● A way for code to store information by associating a value with a name
● Variables are perhaps one of the most fundamental aspects of

programming! Without variables, the expressive power of our computer
programs would be severely degraded.

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int (or long) 42

-3
106

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int (or long)
○ double

1.06

-18.3454545

4.00

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int (or long)
○ double
○ string

"Hello, World!"

"CS106B"

"I love computer
science <3"

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int (or long)
○ double
○ string
○ char

'a'

'3'
'&'

Types

● As you should know from prior programming classes, all variables have a type
associated with them, where the type describes the representation of the
variable.

● Examples of types in C++
○ int (or long)
○ double
○ string
○ char

● In C++, all types must be explicitly defined when the variable is created, and
a variable cannot change its type.

Types in C++
In C++, all types must be explicitly defined

when the variable is created, and a variable
cannot change its type.

Key takeaway

Typed Variables

int a; // declare a new integer variable

a

in
t

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

a

5in
t

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char b = 'x'; // b is a char
("character") a

5in
t

b

'x'ch
ar

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

int a = 12; // ERROR! You do not need the
type when re-assigning a variable

a

5in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

int a = 12; // ERROR! You do not need the
type when re-assigning a variable

a = 12; // this is okay, updates variable
value

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Typed Variables

int a; // declare a new integer variable

a = 5; // initialize the variable value

char c = 'x'; // b is a char ("character")

double d = 1.06; // d is a double, a type
used to represent decimal numbers

string s = "this is a C++ string";

double a = 4.2; // ERROR! You cannot
redefine a variable to be another type

int a = 12; // ERROR! You do not need the
type when re-assigning a variable

a = 12; // this is okay, updates variable
value

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Questions?

Mid-Lecture
Announcements
Break!

Announcements

● If you have WiFi and power, finish Assignment 0 by Friday at 11:59 pm
PDT.
○ If you’re running into issues with Qt Creator, come to the Qt

Installation Help Session Thursday.
● Assignment 1 will be released Thursday (tomorrow), and after that

lecture is over, you will have the skills you need to get started on pt 1!
○ YEAH hours Friday 12:15 pm Hewlett 102

● We will be sending a lot of updates on Ed today regarding the status
of sections, lecture, and the website.

● Thanks for being flexible! Stay safe!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1218/assignments/0-namehash/

Functions and
Parameters

Anatomy of a function

function(input)input output

Anatomy of a function

parameters/
arguments

function(input)input output

Anatomy of a function

function(input)input output

parameters/
arguments

parameter(s)
One or more variables that your

function expects as input

Definition

Anatomy of a function

function(input)input output

parameters/
arguments

argument(s)
The values passed into your
function and assigned to its

parameter variables

Definition

Anatomy of a function

function(input)input output

return value

Anatomy of a function

function(input)input output

return value
return value

The value that your function
hands back to the “calling”

function

Definition

Anatomy of a function

function(input)input output

parameters/
arguments

return value

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

function
prototype

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

function name

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

input expected
(parameters)

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

input expected
(parameters)

Notice that these look very
similar to variable declarations!
You can think of parameters as a
special set of local variables that
belong to a function.

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

output expected
(return type)

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

output expected
(return type)

How do you designate a function
that doesn't return a value? You
can use the special void keyword.
Note that this type is only
applicable for return types, not
parameters/variables.

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

returnType functionName(varType parameter1, varType parameter2, ...) {

 returnType variable = /* Some fancy code. */

 /* Some more code to actually do things. */

 return variable;

}

function
definition

Anatomy of a function

returnType functionName(varType parameter1, varType parameter2, ...);

returnType functionName(varType parameter1, varType parameter2, ...) {

 returnType variable = /* Some fancy code. */

 /* Some more code to actually do things. */

 return variable;

}

returned value

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Order matters! A
function must always
be defined before it is
called.

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

caller
(function that made the call)

callee
(function that got called)

Function Example

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

parameters

return value

arguments

a10.6

do
ub

le

b7.2

sum17.8

do
ub

le
do

ub
le

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

a10.6

do
ub

le

b7.2

sum17.8

do
ub

le
do

ub
le

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example
These variables only
exist inside average()!

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

mid

8.9

do
ub

le

double average(double a, double b){
double sum = a + b;
return sum / 2;

}

int main(){
double mid = average(10.6, 7.2);
cout << mid << endl;
return 0;

}

Function Example

mid

8.9

do
ub

le

This variable only
exists inside main()!

// C++:
#include<iostream>
using namespace std;

int doubleValue(int x) {
 x *= 2;
 return x;
}

int main() {
 int myValue = 5;
 int result = doubleValue(myValue);

 cout << "myValue: " << myValue << " ";
 cout << "result: " << result << endl;
 return 0;
}

Pass by Value

Take a guess!

What is the console
output of this block of
code?

// C++:
#include<iostream>
using namespace std;

int doubleValue(int x) {
 x *= 2;
 return x;
}

int main() {
 int myValue = 5;
 int result = doubleValue(myValue);

 cout << "myValue: " << myValue << " ";
 cout << "result: " << result << endl;
 return 0;
}

Pass by Value

myValue: 5 result: 10

Why is this the case?

// C++:
#include<iostream>
using namespace std;

int doubleValue(int x) {
 x *= 2;
 return x;
}

int main() {
 int myValue = 5;
 int result = doubleValue(myValue);

 cout << "myValue: " << myValue << " ";
 cout << "result: " << result << endl;
 return 0;
}

Pass by Value

● The reason for the output is that the parameter x
was passed to the doubleValue function by value,
meaning that the variable x is a copy of the variable
passed in. Changing it inside the function does not
change the value in the calling function.

● Pass-by-value is the default mode of operation
when it comes to parameters in C++

● C++ also supports a different, more nuanced way of
passing parameters – we will see this in the next
lecture!

Control Flow

● conditional statements: if/else
● loops: while loops, for loops

are tools that help us control the flow

Boolean Expressions

Expression Meaning

a < b a is less than b

a <= b a is less than or equal to b

a > b a is greater than b

a >= b a is greater than or equal to b

a == b a is equal to b

a != b a is not equal to b

Operator Meaning

a && b Both a AND b are true

a || b Either a OR b are true

!a If a is true, returns false, and vice-versa

Conditional Statements

● The C++ if statement tests a boolean expression and runs a block of code if the expression is true, and, optionally, runs a

different block of code if the expression is false. The if statement has the following format:
○ if (expression) {

 statements if expression is true
} else {
 statements if expression is false
}

Note: The parentheses around
expression are required.

Conditional Statements

● The C++ if statement tests a boolean expression and runs a block of code if the expression is true, and, optionally, runs a

different block of code if the expression is false. The if statement has the following format:
○ if (expression) {

 statements if expression is true
} else {
 statements if expression is false
}

Note: The parentheses around
expression are required.

● In Python, a block is defined as an indentation level,
where whitespace is important. C++ does not have any
whitespace restrictions, so blocks are denoted with
curly braces, { to begin a block, and } to end a block.

● Blocks are used primarily for conditional statements,
functions, and loops.

Conditional Statements
● The C++ if statement tests a boolean expression and runs a block of code if the expression is true, and, optionally,

runs a different block of code if the expression is false. The if statement has the following format:
○

● Additional else if statements can be used to check for additional conditions as well
○

if (expression) {
 statements if expression is true
} else {
 statements if expression is false
}

if (expression1) {
 statements if expression1 is true
} else if (expression2) {
 statements if expression2 is true
} else {
 statements if neither expression1 nor expression2 is true
}

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

Execution continues until
expression evaluates to false

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

int i = 0;
while (i < 5) {
 cout << i << endl;
 i++;
}

Output:
0
1
2
3
4

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

int i = 0;
while (i < 5) {
 cout << i << endl;
 i++;
}

Output:
0
1
2
3
4

Note: The i++ increments the variable i by 1, and is the reason C++ got its name!
(and there is a corresponding decrement operator, --, as in i--).

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

● for loop syntax in C++ can look a little strange, let's investigate!

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
} The initializationStatement

happens at the beginning of the loop,
and initializes a variable.

E.g., int i = 0.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

The testExpression is evaluated
initially, and after each run through the
loop, and if it is true, the loop
continues for another iteration.

E.g., i < 3.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

The updateStatement happens after
each loop, but before
testExpression is evaluated.

E.g., i++.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for (int i = 0; i < 3; i++) {
 cout << i << endl;
}

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for (int i = 0; i < 3; i++) {
 cout << i << endl;
}

Output:
0
1
2

Exercise

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print ("Liftoff")

if __name__ == "__main__":

 main()

Python

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print ("Liftoff")

if __name__ == "__main__":

 main()

Python

C++

#include <iostream>

using namespace std;

int main() {

 /* TODO: Your code goes here! */

 return 0;

}

Try it for yourself!

Write a program that prints out the

calls for a spaceship that is about to

launch. Countdown the numbers from

10 to 1 and then write “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print ("Liftoff")

if __name__ == "__main__":

 main()

Python

C++

#include <iostream>

using namespace std;

int main() {

 /* TODO: Your code goes here! */

 return 0;

}

What’s next?

Strings, Testing, C++ Review

